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ABSTRACT 

We show that for a separable Banach space X failing the Radon-Nikod~,m 
property (RNP), and e > 0, there is a symmetric closed convex subset C of the 
unit ball of X such that every extreme point of the weak-star closure of C in the 
bidual X** has distance from X bigger than 1 - e. An example is given 
showing that the full strength of this theorem does not carry over to the non- 
separable case. However, admitting a renorming, we get an analogous result 
for this theorem in the non-separable case too. We also show that in a Banach 
space failing RNP there is, for e > 0, a convex set C of diameter equal to 1 
such that each slice of C has diameter bigger than 1 - e. Some more related 
results about the geometry of Banach spaces failing RNP are given. 

I. Introduction 

Let C be a closed convex bounded (abbreviated c.c.b.) subset of  a Banach 
space X and denote by C its weak-star closure in the bidual X**. 

It is well known that a Banach space X fails the Radon-Nikod~m property 
(RNP) if and only if there exists a c.c.b, subset of  Xwithout denting points (see 
[D-U]). The failure of RNP for X is also equivalent to the existence of a c.c.b. 
subset C of X such that all the extreme points of  C are in X** \ X ([B 1 ], [St2]). 

By considering the moduli 

~ l ( C )  = inf(diam S: S slice of C} and c~2(C) = dist(Ext(C), X) 

one can give the following quantitative analogues of the above statements. 

Received October 27, 1986 and in final revised form August 25, 1988 

225 



226 w. SCHACHERMAYER ET AL. Isr. J. Math. 

THEOREM 1.1. Let X be a Banach space failing RNP. Then 

(i) for every e > 0 there e~ists a separable c.c.b, subset C o f  X such that 
diam C = I and St(C) > 1 - e. 

(ii) For every e > 0 there exists a c.c.b, separable circled subset C o f  ball(X) 

such that 82(C) > (1/2) - e. 

(iii) I f  moreover X is separable, for every ~ > 0 there exists a c.c.b, circled 

subset C of  ball(X) such that 82(C) > 1 - e. 

THEOREM 1.2. Let C be a c.c.b, subset o f  X. Then 

(i) 61(C ) ~ 6~2(C ). 
(ii) Conversely, i f  ~(  C) = [J' > 0 then for every e > O, there is a c.c.b, subset D 

o f  C such that O2(D ) > ~/4 - e. Moreover i f  X is separable, then D can be chosen 

so that ~2(D) > fl/2 - e. 

Note that in the second statement of  the above theorem one has to pass to a 

subset D of C (see Remark 2.8). Moreover the value fl/2 for the separable case 

is best possible (see Proposition 2.10). 

Let us now give an outline of the organization of this paper. Section 2 is 

devoted to the proofs of Theorems I. l and 1.2. In Section 3, we show that for 

some equivalent norms on X the set C of Theorem 1.1 can be chosen to be the 

unit ball of these norms. 
Analogous results to Theorem 1.1 for w*-compact subsets of  dual Banach 

spaces X* failing RNP are discussed in Section 4. It turns out that there 

holds an analogous result for the existence of "big" slices for these sets while 
there is no analogue to 1. l (ii). We also give related results for the notions of 
Point of Continuity property and strong regularity and present a result of  

M. Talagrand: There is a w*-compact convex subset Kof .g (A)  such that every 
convex combination of weak :slices of  K is big. 

In Sections 5, 6 and 7 we discuss several counter-examples. In Section 5 we 

prove that for the predual J ,  T of  the James' tree space there exists a constant 

fl < 2 for which every c.c.b, subset of  the unit ball of J , T  satisfies fit(C) _-< ft. 

This shows that the convex C constructed in Theorem 1.1(i) cannot be in 

general a subset of a ball of radius 1/2. 

Section 6 is devoted to proving that for some constant a < 1, every c.c.b. 

subset C of  the unit ball of  JT* satisfies 52(C) =< a. This shows that the full 

strength of Theorem 1.1 (iii) cannot be carried over to the non-separable case. 

Finally in Section 7, we construct a subspace ZA of JT* which shows that the 

separability assumption in the measurability Lemma 7. l, used in the analyti- 
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cal proof of Theorem 1.1 (iii), is essential. The space ZA also answers negatively 

a question of K. Musiat about extendability of Pettis integrable functions. 

We recall now some definitions: A slice of C is a subset S of C of the form 

S(x*, ~) = {x ~ C: x*(x)  > M~. - c~}, where x* EX*, II x* II = 1, O > 0 and 
Mx. = supx~c x*(x). 

A Banach space X has RNP if every operator T:L1[O, 1] ~ X is represen- 

table, i.e., there exists a Bochner integrable function f :  [0, 1 ] ~ X  such that 

Tg = ~ g f f o r  every gEL1[O, 1]. 

For A _C[0, 1], m ( A ) > 0 ,  m the Lebesgue measure on [0, 1], let ~ = 

{ f E L ' [ 0 ,  1 ] : f = f ' x A ,  f > 0 ,  I lf l lL,= 1}. ~t0.1j will simply be denoted 
by ~ .  (Let us point out that the systematic use of the sets ~A was initiated by 
C. Stegall [St2].) 

The two last-named authors want to thank Professors B. Maurey and 

G. Godefroy for helpful discussions. Special thanks go to M. Talagrand for 

allowing us to include an unpublished result of his (Theorem 4.6 below). 

2. Proofs of Theorems 1.1 and 1.2 

To prove Theorem 1.1 we need the following lemmas. 

LEMMA 2.1. Let T: LI[0, 1]---Xbe a bounded linear operator, A c_ [0, 1], 
m(A)  > O, and C = T ( ~ ) .  I f  S is a slice o f  C then there is B c_ A, m(B)  > 0 
such that S ~_ T ( ~ ) .  

PROOF. S is given by some x*EX*,  II x* II = 1 and ~ > 0 via 

S = S(x*, 6) --- {x ~ C: <x, x*)  > Mx. - 6} 

where Mx. = supy~c ( y, x*). 
One easily verifies that Mx. --- ess sup ZA" (T'x*).  

The set B = { t EA  • T*(x*)(t) > Mx. - c~/2} satisfies the requirement of the 
lemma. • 

LEMMA 2.2. Let T: L1[0, 1]~  X be a bounded, linear operator, A C_ [0, 1], 
m ( A ) > 0 ,  a > 0  a n d x E X .  

I f  T ( ~ )  is not contained in the closed ball o f  radius a around x then there is 

B C_ A, m(B)  > 0 such that dist(x, T ( ~ ) )  > o~. 

PROOF. If T(~A) is not contained in ball(x, o0 there is a slice S of T(~q~) 
such that dist(x, S) > a. Lemma 2.1 then furnishes the desired B. • 
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The next lemma is a well-known folklore result. We include a proof for the 

sake of completeness. 

LEMMA 2.3. 
1 ~*~x''x'). Then 

Let X be a Banach space, Y be a subspace of X and ~ E Y** = 

½ dist( ¢, Y) < dist( ~, X) __< dist( ~, Y). 

PROOF. Let x E X. By the: Hahn-Banach theorem it is easily seen that 

dist(x, Y) = dist(x, Y**). Let ~ E Y**. We put a = dist(~, X). Let r />  0 be 

given. Then there exists x, ~ X  such that l[ x, - ~ II < a + q. By the above 
remark there exists y, E Y  such that I l x , - y ~  I[ < a  + r/. Therefore 

[1 ~ - Y~ I1 < 2a + 21/and the lemma is proved. • 

PROOF OF THEOREM 1.1. (i) If X fails RNP then there is a non-represen- 

table operator T: L 110, 1 ] ~ X. Hence there is A _C [0, 1 ], m (A) > 0 and a > 0 

such that d i a m ( T ( ~ ) )  > a fo:r every B c_ A, m(B) > 0. Indeed, otherwise a 

standard exhaustion argument would show that T is representable. 

Let fl = inf{diam T(o~B) : B C_ A, m(B) > 0}, and Bo c_ A, m(Bo) > 0, such 

that fl0 = diam T(~o) <il l(1 -- e). 
The set C =  T(~o)/flo satisfies the requirements of l.l(i) in view of 

Lemma 2.1. 
(ii) The assertion of 1.1 (ii)follows immediately from 1. l(iii) and Lemma 

2.3 (take a separable subspace failing RNP). 
(iii) As in the proof of Theorem 1.1(i) let T: LI[0, 1 ] ~ X  be a non- 

representable operator and apply exhaustion (compare [St2]) to obtain A c 
[0, 1], m(A) > 0, and a > 0 such that for every y ~ X a n d  B c_ A, m(B) > O, 

T ( ~ ) ~ b a l l ( y ,  a ) =  { z E X :  II z - y  II =<-,,}. 

Let fl = infrex infB c_A,,,tB)>0 supo_c B,mW)>0 dist(y, T(~Vo)) and find Y0 and B0 
such that 

sup dist(y0, T ( ~ ) )  = fl0 <fl/(1 - e/2). 
D cB0, re(D)>0 

It follows from Lemma 2.2 that T ( ~  0) is contained in ball(y0, fl0). 

Let (Yn)~= 1 be a dense sequence in X. For n E N find m again by exhaustion 

and using 2.2 - -  subsets D ~ , . . . ,  D~t,) of  B0 such that 

dist(y., T(,~ro.))>/~(1 - e / 2 )  for 1 ~ i  <= N(n) 

and 
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m Df  > m(Bo)(1 - 2-(~+21). 
i =  

I Iu(n)DFandle tEf  = D r  O E.  We shall showthat ,  for n E N ,  L e t E  = n n = l  ,-,i=1 
every extreme point  y** of  the weak-star closure T(~e)  of  T(~e )  has distance 

f rom y, greater than fl(1 - e/2). 

Indeed, for every, n ~ N ,  ~e  = convex h u l l { ~  . . . . .  ~7,,.,} and - -  passing 
to the weak-star closures in L~[0, 1]** I we get 

~e  = convex h u l l { ~ ;  . . . .  , ~e~,,.)}. 

As T ( ~ )  = T * * ( ~ )  = convex hull{T(~e;):  1 < i < N(n)},  we see that the 

extreme point  y** of  T(~"') must  be contained in some T ( ~ ) ,  hence 

dis t(y, ,  y**) >_- dist(Yn, T ( ~ ; ) )  = dis t (y , ,  T ( ~ ) )  > fl(1 - e/2). 

Letting C~ = ((1 - e / 2 ) / f l ) - [ T ( ~ )  - Y0] we obtain a closed convex subset o f  
the unit ball o f  X s u c h  that ~2(C,) > (1 - e/2) 2 > 1 - e. 

Letting C = c l o s e d  convex h u l l ( q , - q )  one obtains C = c o n -  

vex hull(C~, - C~). Hence every extreme point  o f  C has distance from Xgreater  

than 1 - c, as it must  be an extreme point  o f  either C~ or - C~. • 

To prove Theorem 1.2 we need one more lemma which is a quanti tat ive 

version of  a result o f  R. Huf f  and P. Morris  ( [D-U] ,  VII. 4.1). 

LEMMA 2.4. Let C be a c.c.b, subset o f  a Banach space X, then 
(i) I f  C is such that every slice has diameter bigger than 1, then there 

is no slice o f  C which can be covered by finitely many sets o f  diameter strictly 
less than 1. 

(ii) I f  C is such that for every ball B of  radius less than 1 one has 
C = c o n v  (C \ B), then for everyfinite number B I , . . . ,  B, o f  balls o f  radius less 
than 1 one has C = ~ ( C \ U i n _ l  Bi). 

PROOF. The p roof  will use some arguments and concepts due to 

J. Bourgain [B2]. If  S = S(x*, ~) is a slice of  C we denote by E°Gq)= 

{ ~ E Ext (C) : ~(x*) > Mx. - fi}. 

(i) Suppose that there is a slice S o f C ,  and finitely many setsA~ . . . .  , An of  X 

all o f  diameter  strictly less than 1 such that S C Ui"..~ A,. This  inclusion 
obviously implies E°(S) c Ui~ t  A~. 

Without  loss of  generality we may assume that ( A i ) ~  is minimal  in the 



230 w. SCHACHERMAYER ET AL. Isr. J. Math. 

sense that no strict subfamily of (Ag)g_<, covers E°(~¢). Hence there exists 

~ EE°(~¢) such that ~ J ~  and ~ J ~ ,  for i >= 2. 

Since ~ is an extreme point of (~, we can find a w*-slice T of C such that 
E 7 ~ c S and if" N J~ = Z~ for every i >_- 2. (We use the fact that the w*-slices 

containing ~ form a basis for the w*-topology of C at ~.) Hence 

E°(i) C 7 ~ n E°(S) CAl. 

By a result of  J. Bourgain ([B3], Lemma 3) there is a slice R of C such that 

/~ c 7", and for every x ~ R  one has 

dist(x, ~ *(E°(7~))) ~. 

This implies 

diam(R) < diam(E°(7~)) + 

This finishes the proof of (i). 

1 - diam(Al) 

1 - diam(AO < 1 + diam(A0 

2 2 
< 1 .  

(ii) The proof of part (ii) is similar to the above one if we observe that the 

conclusion of (ii) is equivalent to the fact that no slice of C can be covered by 

finitely many balls of radius less than 1. • 

PROOF OF THEOREM 1.2. (i) Let Cbe a c.c.b, subset o fa  Banach space X. If 
Sis a slice of C, then ~q contains an extreme point ~ofC.  As ~¢ fq X ~ ~ we get 

diam S = diam ~¢ >_- dist( ~, X) _-> 52(C), 

hence 51(C) >_- ~2(C). 
(ii) Let us first suppose that X is separable. Fix e > 0, and let (y,),  >~ be a 

dense sequence in X. Using the above lemma, and a standard perturbation 
argument ([D-U], proof of V.3.4) one can show that there exists a finite C- 

valued martingale (M,), ~, on [C), 1] such that 

[[M,+l( t ) -y j l  I > ( f l - e ) / 2  f o r e v e r y t E [ 0 , 1 ] ,  n ~ N ,  l <j<=n. 

If T: L'[0, 1]----X is the operator associated to the martingale (3/,),  ~ 1, it is 

not difficult to see that for A I= [0, 1], m(A) > 0 and n >-__ 1, T ( ~ )  is not 
contained in ball(y,, (fl - e)/2). The proof is continued as in Theorem 1. l(iii) 
by considering the expression 

inf inf sup dist(y,, T ( ~ ) )  > (fl - e)/2. 
n BcA,m(B)>O DCB,m',D)>O 
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The non-separable case follows from the separable one and Lemma 2.3. • 

REMARK 2.5. In view of  Theorems 1.1(i) and 1.2(ii) one might ask 

whether, given a separable Banach space X and e > 0, it is possible to find a 

convex closed subset C c B(X) of  the unit ball of  Xsuch  that all the slices of  S 

have diameter  at least 2 - e. We will see in Section 5 that such a result is not 

true in J ,  T, the predual of  the James tree space. However  the answer is 

positive for Banach lattices [W]. 

REMARK 2.6. It is not possible, in general, to take e - - 0  in Theorem 

1. l(iii) as the following equivalent norm on Co shows: 

Ixnl 
I(Xn)l = s u p  IX, I + 

n n = l  2 n 

Its bidual norm on l ~ is given by the same expression and for every 

~ U l ~ \ { 0 }  one has d i s t l . t ( ~ ; c 0 ) < l ~ [ .  Indeed, let n be such that ~, ~ 0. 

Then [~--~nen[ < [~l. 

REMARK 2.7. The question whether one may drop the separability 

assumption in Theorem 1.1 (iii) is quite delicate and will be settled negatively 

in 6.1 below. 

REMARK 2.8. The following example shows that in Theorem 1.2(ii) we 

have to pass to a subset D of  C and that it is not possible - -  in general - -  to get 
a value better  than fl/2 in the conclusion of  1.2(ii). 

All the slices of  the unit ball of  C[0, 1] have diameter  equal to 2, while the 

constant function Z[0,1] is an extreme point  o f  the unit ball o f  C[0, 1]**. (See 
also Remark  2.9.) 

Let us sketch a proof  of  these two claims: 

(1) Let / t  E J/g[0, 1], 1[/~ [I = 1. For d > 0 choose two non-void open sets A 

and B such that A N B = ~ and I/t [(B) > 1 - 5/3, and a functionfo E C[0, 1], 

II f0 II = 1 s u c h  t h a t / t ( f 0 )  > 1 - 0 / 3 .  

Choose now two functions f ,  f2E C[0, 1], II f~ II = 1 s u c h  t h a t f  = 1 (resp. 

f2 = - 1) onA a n d f  = f2 = fo on B. One quickly verifies that p ( f )  > 1 - 5and  

/1(f2) > 1 - ~ and it is clear that II f ,  - f2 II = 2. Hence the diameter  o f  the 
slice S ( p ,  ~) o f  the unit ball of  C[O, 1] is equal to 2. 

(2) Let L be the compact  set such that C[0, 1 ]**=  C(L) and denote by 

g :  L ---[0, 1] the quotient  map obtained by restricting the elements of  C(L)* 
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to C[0, 1]. Then the natural injection i0 : C[0, 1] ~ C(L) is given by io(f) = 
f o  ~u, hence i0(gt0,u) =ZL whic]h is an extreme point of  the unit ball of  C(L). 

REMARK 2.9. One might also ask, whether - -  in the situation of Theorem 

1.1 (iii) - -  one can obtain a closed convex set C of diameter less than 1 such 

that ~2(C) > (1 - t). This is not true as shown by the next proposition. Hence, 

"a subset of  the unit ball" is the proper assumption for Theorem 1.1 (iii) and a 

"set of diameter 1" the proper one for Theorem 1.1 (i). 

PROPOSITION 2.10. Every bounded subset C of  LI[0,1] satisfies 
al(C) ~ 202(C). 

PROOF. Indeed, following [G-M] we define 

= lim sup f I f ldt .  p(C) 
M ~ m  f E C  J lfJ > g 

Then we see that SUPx..ecdist(x**,L1)<p(C), while diam(C)>2p(C) .  
[These facts about the "modulus of equi-integrability" are well-known.] 

The conclusion of the proposition follows by applying these inequalities to 
the slices S of C, and by noting that for every slice S of C, S t3 Ext(C) ~ ~ .  • 

REMARK 2.1 1. The value 1/2 in Lemma 2.3 is optimal. The subsequent 
easy example will be crucial as motivation for 6.1 and 7.2 below. 

Let lq = N O { oo } be the Alexandroff compactification of N, c the Banach 

space of continuous functions on lq and Co the hyperplane of c defined by 

Co = { f e c : f ( m ) = O } .  

Note that c** equals l~(lq) whille Co** equals the hyperplane of  l°°(lq) given by 

co** = { f ~ l°~(~l) : f (  oo ) = 0}. 

Let fo~co** be given by fo(n) = 1 for every n ~ N  and fo(m) = 0. Clearly 
dist(fo, Co) = 1. However, dist(fo, c) = 1/2. Indeed, the function go given by 

go(n) = 1/2 for every n E N  is in c and [Ifo - g o  I[ = 1/2, whence dist(fo, c) < 
1/2. The reverse inequality dist(fo, c) => 1/2 is given by 2.3. 

3. Two renorming results 

In this section we will prove that for spaces failing RNP, one can find 
equivalent norms for which the new unit balls are "bad" with respect to the 
phenomena of  "big slices" and of  "far extreme points." 



VOI. 65, 1989 RADON-NIKODYM PROPERTY 233 

THEOREM 3.1. Let  (x, II • II ) be a Banach space and a > O. Suppose there 

exists an absolutely convex, closed subset C o f  B II. II (X) such that all slices o f  C 

have II • II -diameter > a. Then for  every e > 0 there exists an equivalent norm 

l" I on X such that I" I>= I1" II and every slice S o f  BH.I(X) satisfies: 

diaml. l(S ) >_- d iam n . i i(S) ~ ot - e.  

PROOF. Fix e > 0 and let C be as in the assumption.  

We define an equivalent norm I • I on X by 

1 
B i .I(X) = - -  (C + eBii. tl (X)). 

l + e  

We will prove that every slice of  Bi. l (X)  has I1" I I - d i a m e t e r  at least 

( a - 2 e ) / ( 1  +e ) ,  so every slice of  Bi. t (X)  has also I" I-diameter at least 
(a - 2e)/(1 + e). 

Indeed, let f E X * ,  Ifl  = 1, fl > 0. We put 7 = s u p c f a n d  J = supa~ ~tx) f .  
As easy computa t ion  shows that (y + e~)/(l + e) = 1 and 

1 

l + e  
- - [ S ( C ;  f ,  (1 + e)fl/2) + e .S(BII. II (X); f ,  (1 + t) f l /2e)] c_ S(BI.  i(X); f ,  fl). 

F rom this we deduce that ]l • II -d iam[S(Bt . t (X) ; f ,  fl)] > (a - 2e)/(1 + e). • 

COROLLARY 3.2. Let  X be a Banach space without RNP.  Then for every 

e > 0 there exists an equivalent norm I • I on X s u c h  that every slice S o f B  I . i(X) 

satisfies diam I . i(S) _>- 1 - e. 

PROOF. In view of  the preceeding theorem it is enough to find a c.c.b. 
symmetr ic  subset C of  Ball(X) with ill(C) > 1 -  e. Such a set exists 

by  Theorems 1.1(iii) and 1.2(i) applied to a separable subspace Y of  X 
failing RNP.  • 

We will see in Section 6 that Theorem 1. l(iii) is false in the non-separable 

case, however  allowing a renorming there is an analogue for it. 

THEOREM 3.3. Let  X be a Banach space without RNP.  Then for  every e > 0 

there exists an equivalent norm I • I on X such that dist I . i(Ext(B I . i(X**)); X) > 
l - - e .  

PROOF. Let X b e  a Banach space without  RNP,  Ya separable subspace o f  X 

without  RNP.  
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For 0 < e < 1/2, let C c_ B(Y) be the absolutely convex closed subset given 

by Theorem 1.1(iii). We define an equivalent norm [[. ]1 on X b y  

B~q(X) = B(Y) + B(X). 
2(1 - 2e) 

Then C c_ B~.~(X) and dist~.n(Ext((~), X) > 1 - 2e. 

Indeed, let ~EExt((~). We put L = ~ + (1 - 2e)B(Y**). 

From disttl, il ( ~, Y) > 1 - e.. we deduce that dist II. II (L, Y) > e. By Lemma 

2.3 it follows that dist li-li (L, X) >= ~/2. This means that 

-X ~I(1- 2e)B( y**) + -~ B(X**)I = ( 1 -  2e)BH(X** ) for every x ~ X. 

This means that [ ~ - x ]  > 1 -- 2e for every x EX.  

The set B t . ~(X) = C + eBH(.¥) is the unit ball of  an equivalent norm I • I on 

X which satisfies dist t . i(Ext(Bi, r(X**)); X) > 1 - 4e. • 

REMARK 3.4. Observe that none of  the conclusions, neither of  Corollary 

3.2 nor of  Theorem 3.3, is true for every norm on X as is shown by the 

following observation. 

I f  II • II is any norm on X, let x0 ~ x such that ]] x0 ]1 = 2, and define a new 

norm [ • I by B t .l(X) = ~ [  + x0, BII. II(X)], then Xo is a strongly exposed point 
of  B I . i(X) as one quickly verifies. 

PROBLEM 3.5. Given a Banach space Xfail ing RNP, and e > 0, does there 

exist an equivalent norm [ • [ on X such that all the slices of  the new unit  ball 

have [ • I-diameter at least 2 - e? 

Notice that in view of  Theorem 1.2, a positive answer to this problem will 

give an improvement  of  the above two results. Let us also point out that the 

answer is positive for non-strongly regular dual spaces ([Go], [Go-M]) and for 

Banach lattices failing RNP [W]. 

4. Related results 

In this section we prove that for a dual Banach space X* failing RNP, an 

analogous result for Theorem 1. l(i) holds true for w*-compact sets. On the 

other hand the w*-version of  Theorem 1.1(ii) fails to be true, i.e., the set C 

cannot be taken to be w*-compact in general. This solves negatively a problem 

o f J .  Diestel and J. J. Uhl. (See Remark 4.5.) 
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We end this section by giving analogues of Theorem 1. l(i) for the notions of  

point of  continuity property (PCP) and strong regularity. 

PROPOSITION 4.1. Let X* be a dual Banach space failing RNP. For e > 0, 

there exists a convex w*-compact set C of  X* such that diam(C) = 1 and all the 
w*-slices of  C have diameter greater than 1 - ~. 

PROOF. By a result of C. Stegall ([St1], Theorem l) there is T o : X ~  
L~(A,/1) such that the restriction of  T* to L ~(A) fails to be representable. Here 

A denotes the Cantor group ( - l, + 1 )N and p the Haar measure on A. 

As in Lemma 2.1, we can prove that i rA c A ,  Ft(A)> 0, then for every 

w*-slice S of T ( ~ ) ,  there exists B c A ,  I~(B)>O such that T ( ~ )  C S .  

Hence the rest of  the proof of 1. l(i) carries over verbatim. • 

PROPOSITION 4.2. There ex&ts a separable Banach space X such that X* 

does not have RNP, and such that every convex w*-compact subset C of  X* 
contains an extreme point of  C (its w*-closure in X***). 

To prove this proposition we use the notion of  furthest point. 

Let K be a bounded convex subset of  a Banach space X and x ~ X. We say 

that x is a furthest point w.r. to Ki f the re  exists yoEK such that I[ x - Y0 l[ = 

supyer II x - y II. 
Let us prove the following lemma. 

LEMMA 4.3. I f  X is a Banach space with RNP and such that the weak and 
the norm topologies coincide on the unit sphere of  X*, then every convex w*- 
compact subset K o f  X* has a denting point. In particular K • Ext(/£) v~ ~ .  

PROOF. Let K be a convex w*-comapct subset of X*. Since X has RNP, 

by a result of  Deville and Zizler ([D-Z], Prop. 3) Khas a furthest point say x*. 
This means that the convex w*-lower semi-continuous function ~0(y*)= 

t] y * - x *  ]] achieves its maximum on K, and since K is convex and w*- 
compact, ~0 achieves its maximum on some extreme point y* of  K (immediate 

consequence of Choquet's representation theorem). 

Now since the weak and norm topologies coincide on the unit sphere S(X*) 

of X*, all the points of S(X*) are points of continuity of Id:  (B(X*), w)--, 

(B(X*), 1[ • II )- And since K c ball(x~', [[ y~' - x~' 1[ ), y~' is a point of continuity 

of  Id : (K, w) ~ (K, II • II ), and since y~' is an extreme point of  K, it is also a 

denting point of  K by a result of  [L-L-T]. • 

PROOF OF PROPOSITION 4.2. It is shown in [S1] that the weak and norm 
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topologies coincide on the unit sphere S(JT*) of JT*, the dual of  the James' 

tree space. 

Since JT  has RNP, and JT* does not have RNP, Proposition 4.2 follows 

from Lemma 4.3. • 

REMARK 4.4. Let us also mention that in [S 1] the following more precise 

version of 4.2 is shown: If C is convex, w*-compact in JT* then the functionals 

which strongly expose C form a dense G6 subset of JT**. 

REMARK 4.5. Diestel and Uhl asked whether X* has RNP or X does not 

contain l 1 if we assume that every convex w*-compact subset of  X* has weak 

slices of arbitrarily small diameter. Proposition 4.2 gives a negative answer to 

.the first part of  the question. The second part of  the question was recently 

solved positively for separable Banach spaces by M. Talagrand. We include 
this result and thank M. Talal~,rand for permitting us to do so. 

THEOREM 4.6 [Talagrand]. There exists a convex w*-compact subset K of  

PA, the set o f  probability measures on A, such that for every k E N and every 

weak slices S~ . . . . .  S~ o f  K, one has 

[' ] diam fc (S, + . . .  + Sk) = 2. 

PROOF. We first introduce some notations. For every natural number 
s >_- 3, we associate the following family of probability measures. (The underly- 
ing measure space will be always clear from the context.) 

For I C N, i EN,  define on the ith copy of {0, 1} a measure 

vs,z(i)= l .} 6~i) + s - 1 6t o if  i ~ I, 
S 

[~ s 1 t ~ ° + l ~ [ °  i f i ~ I .  
S 

Now for J C N, I C J, and p E! J, define 
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14J,, = ~ v s,, ( i ), 
iEJ 

- [ ] 14,, = (~P)~ ~ v~,,(i) , 
iEJ 
i@p 

: , , ,  [ ] /*,,i = a l P ) ®  ( ~  v,,,(i) . 
iEJ 

i@p 

LEMMA 4.7. For every s >-_ 3, there exists A ( s ) E R  + such that  

a,,. ~ .t,,.l.p -t,,.],p a(s)v / -~ .  
: #s,[l,n] - -  fl  s,[l,n] "4¢(All,.l) 

p = l  

REMARK. It might be helpful for the understanding of  the lemma to 

observe that the case s = 2 corresponds to the easy implication of  the 

Khintchin-inequali ty for Rademacher-functions.  

PROOF. For t E A . ,  let ao(e) = C a rd { j :  ej = 0}, a~(e) = Card{j"  ej = 1}. 

[Note: ~o(e) + oh(e) = l e I.] Then 

<,,.,,, ( s,).,,,_ o.,.i:l.,, l,-,l.,,,, o , . =  z ,0(~>.~) . s _ -  
t ea .  k S /  \ S / 

(~)"- '~ ~:. 1,-~,. s~, 
k=O 

By Gauss '  formula, a direct computa t ion  shows that for every n E N, and 

every 0 _-< l =< s - l, we have 

s ( 
]~sn+l+l  = J~sn+l + 2 1 - - -  

s - 1  

l ) --n n 
s - 1  ( s - l )  C,~+t. 

Now by Stirling's formula we deduce that 

<:_~_p. +__c{ s I" 
P"+' = s -  1 , f ~  \s  - I: 

for some constant C (depending on s), hence ~s,. +~ =< as,. + (C l~ /n ) ,  and then 
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as,, = A x/n.  • 

Observe that for every J c N, every I @ (q~, J},  every finite subset K o f J ,  we 

have 

J'P ~(As) E #sJ,1 p - -  ~ s,1 = OLs,Igl" 
pEK 

LEMMA 4.8. For every s ::>- 3, every a > O, there exists n = n (s, a) such that: 

For every k ~ N, everyJ C N, I J ]  => kn, every(q,)~z~z~EJlI(Aj)*, II II --< 

1, there exists p E J  such that 

- J ,p  J,P 
sup sup I q~i (#s,1 - ~ s,~ ) I < o~. 

IE(O,J} 1 < i < k  

PROOF. Let n be such t;hat A ( s ) < a  n , j ~ ,  where A(s) is the constant  

appearing in Lemma 4.7. We shall show that n satisfies the conclusion of  

Lemma 4.8. 

If  not, there exists k E N ,  d c N, I J [  > kn, ({Oi)l<=i<=kEJ/[(Aj)*, II II --< 1, 
such that for all p E J 

- J  p J,P 
sup sup I ~0i(#,.) - ft s.1 ) I > ~. 

l@(O,J) l"-i<=k 

By a cardinality argument, there exist i0E[1, k], loG{O, J}, K c J, IKI _-> 

n/4, and e = + 1 such that 

- J ,p  = J,p 
e~0~0 (#s.~0 - ,~ s,~°) >= a for every p ~ K. 

This implies 

- J P <-_ a(s)x/-(--g aIKI < Z #~,1o--kt~,'lo [ 
, p~K  

which contradicts the choice of  n. • 

PRooF o r  THEOREM 4.6. Let (Ns)s_>__3 be a parti t ion of  N into infinite sets, 

i.e., INs I = oo, V s > 3. We define for every I c J c N probabil i ty measuresp /  

on Aj by 

p l  ® i n n  
J'fs,l 0 Ns " 

s>3 

We also consider the operator  Tj : C(Aj) ~ C(Aj) defined by Tj ( f ) ( I )  = p-[(f), 
for every I c J ,  where we have identified Aj with the power set 2 ( J ) .  

One can easily check that 7y" a g ( A j ) ~  aCt'(A j) satisfies 7y(5[)  = p], where 
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5] is the Dirac measure at I on Aj, and then T * ( 0 ) =  w * - ~ a ,  pSldO(I). In 

particular 7yj (0) is a probabil i ty measure on Aj if 0 is. 

We will frequently use the following property o f  the operators Tj: IfJ~ and -/2 

are two distinct subsets o f  N, then Tj, u J~ = Tj, ® Tj~. 

If  T = TN, and if  P~ denotes the set of  probabil i ty measures on A, then 

K -- T*(Pa) is a convex w*-compact set o f  P~. We are going to prove that for 

every k E N, every weak slice S~ . . . .  , Sg of  K, one has 

diam[(1/k)(S, + • • • + &)] >_- 2. ((s - 2)/s) for every s > 3, 

which of  course will end the proof  of  Theorem 4.6. 

Observe first that for every J C N, IJI < ~ ,  every a U K  is a convex 

combinat ion of  elements of  K of  the form p[ ® 71, where I runs through the 

subsets of  J ,  and 71 = 7~N\j(0z) for some probabil i ty measure Ol on AN\j. Indeed, 

this immediately follows from the fact that T'j(5 [) = p[. 

Let now (~0,)~ __<,=<k EJ#(A)*,  II II --< 1, and 5 > 0, and let 

S / =  S(cp,, 5) = {or E K :  O,(a) > Mt - 5}, 

where Mi = supo-eK ~0i(6). 
For every s _>- 3, let Jo c N,, I J01 = k 2kn, where n = n(s, 5/2) is given by 

Lemma 4.8. For every i U [1, k], choose ai E K  such that ~0i(ai)> Mt - ( 5 / 2 ) .  

By the above observation (applied to at) and a convexity argument, we may 

find It c Jo such that ~0t(p~ ° ® 7t.i,) >= M, - (5/2). 
By a cardinality argument, there exists J c J o, IJI > k n ( s ,  5/2), which 

satisfies either J c I~ or J c Jo\I t  for every i E[1,  k]. 
]o \ J If  we put ?i =~Zsa,\] ®Tt,l,, we have, since Jo c Ns, that p JO ®7/,i, = 

#JJnIi @~i" 
Define now elements q4 ~,/~(Aj)* by ~ i ( a ) =  ~0i(a ® ~2i), and apply Lemma 

J,P 4.8 to find p E J  such that SUple{O.]} supl __<~ zk ~ut~J0 p --/~ s.~ ) < ~/2. 
Without  loss of  generality we can suppose that J c It for 1 < i < l, and 

J c Jo \ Ii for l < i < k (1 is some integer in [0, k]). By a convexity argument we 

deduce that 

and 

Then 

14,J,,{p] for 1< i__<l  

for l < i <= k. 



240 w. SCHACHERMAYER ET AL. Isr. J. Math. 

, (,) 
= - - - ® 

k i = 1  i 1 

s - 2  

s 

s - 2  
- -2  

s 

This concludes the proof of Theorem 4.6, since s is arbitrary. • 

COROLLARY 4.9. Let X be a separable Banach space containing l', then for 
every rl > O, there exists a convex w*-compact subset K o f  the unit ball o f  X* such 

that diam[~(Sl + • • • + Sk)] >: 2 -- tl for every weak slices S~ . . . . .  Sk o f  K. 

Proof. A (variant of a) result of  A. Petczyfiski ([P], Theorem 3.4) asserts 

that if a separable space X contains P, then for every q > 0 there exists a 

w*-w*-continuous (1 + t/)-isomorphism from aC/(A) into X*. Corollary 4.9 is 

then an immediate consequence of  Theorem 4.6. • 

Recall (see [G-G-M-S] ,  111.2 and Lemma II. 1) that a Banach space X has 

the point of  continuity property (PCP) if for every bounded set C in X and 

e > 0 there is a non-empty relatively weakly open set V of C with diam(V) < e 

and that X is strongly regular if for every bounded C in X and e > 0 there are 

non-empty relatively weakly open sets Vl . . . .  , V, such that 

diam(n-~(Vt + . . .  + V,)) < e .  

PROPOSITION 4.10. 

(a) I f  X fails PCP there is, fi~r e > O, a closed set C c_C_ X, diam(C) = 1, such 

that every nonempty weakly open subset V o f  C satisfies diam(V) > 1 - e. 

(b) I f  X fails to be strongly regular there is, for ~ > O, a closed convex set C, 

d iam(C)=  1, such that diam(n-~(V~ + . . .  + V, ) )>  1 - e  for every 

collection V1, . . . , V, o f  non-empty weakly open sets of  C. 

PROOF. (a) The proof is straightforward: Let C be a bounded set such that 

inf{diam(U) : U relatiw~ly weakly open in C, U ~ ~ } = a > 0. 

Let U~ be a non-empty relatively weakly open subset of C of  diam(U1) < 
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a/(1 - e). As a relatively weakly open subset U2 of U~ is relatively weakly open 

in C and therefore diam(U2) > a, if U2 ~ ~ ,  we immediately obtain that 

C~ = O~/diam(U~) fulfills the requirements. 

Let us note that an analogous result (with identical proof) holds for the 

"convex point of continuity property" (CPCP). 

(b) For the case of  strong regularity the proof also follows the pattern using 
the subsequent Lemma 4.11. We leave the details to the reader. • 

LEMMA 4.11. Let C be a bounded subset o f  a Banach space X,  Vt, . . . , V, 

non-empty relatively weakly open subsets o f  C and D = n-~(V~ + • • • + V,). 

Let  U~ . . . . .  Um be non-empty relatively weakly open subsets o f  D. Then 

there are n .  m non-empty relatively weakly open subsets W~,~ . . . .  , W,,,, 

o f  C such that 

(n . m)- ' (W~, ,  + . . .  + Win,,) C_ m - ' ( U l  + . . .  + Urn). 

PROOF. Fix 1 _--< j _--< m and let x ~ Uj. We may write x = 

n - ~(x~ + • • • + x,)  where xi E V~. As ~ is a relative weak neighbourhood o f x  

in D we may find x* . . . . .  x * E X *  and ~ > 0  such that ~ _~ 

( y @ D : l { x - y ,  Xq*)l <t~ for 1 < q  < p } .  

Define, for 1 _--<i _<n, W j ,  i = { y E  V,:] { y - x i ,  x*}l  < 6 f o r  1 =<q _-<p}. 

Clearly Wj,, is relatively weakly open in Cand  n -~(W/, 1 + • • • + Wj,,) _ Uj. 

Hence, by doing the above construction for each 1 =<j =< m, we obtain 

(nm)-I ~ ~ Wj,iC_m-I ~ Uj. 
j = l  i=1  j = l  

5. A counterexample 

We give the counterexample answering negatively the problem raised in 
Remark 2.5. 

THEOREM 5.1. There is a constant fl < 2 such that every closed convex 

subset C o f  the unit ball o f  the predual J , T  o f  J T  has a slice o f  diameter less than 

or equal to ft. 

REMARK 5.2. In view of the properties of JT* one may think that V e > 0 

the statement of  the above theorem holds with fl = v/2 + e. However, we only 

prove that Theorem 5.1 holds true for some fl strictly less than 2. 

We start by recalling the notations and properties of  the spaces JT ,  its 
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predual and its duals. We refer to [L-S] for detailed study of  these spaces and 

to [Br] for a general account on James spaces on partially ordered sets. 

Let us first recall the standard terminology on the binary tree T = U , ~  1 A,, 

where A, = (0, 1 }" 

An element t E T is said to be of  length n, written I t I = n, i f  t E A,. 

We say that  t = ( h  . . . .  , t , ) E A ,  is less (in the tree order) than s = 

( S I , . . .  , SIn)EArn, and write t < s, i f  n < m and t~ = s~ for 1 < i < n. 

A segment S of  T is a totally ordered set {t~ : n < i < m } where I t~ I = i for 

every n < i < m and n E N ,  m E N  U {~} ,  (i.e., we also allow infinite seg- 

ments). In the particular case where n = 1, m = oo such a segment will be 

called a branch. Each branch of  Tcan  be canonically identified with an element 

7 o f A  = {0, 1 }N and conversely. 

The space J T  is defined as the completion of  the finitely supported families 

x = (xt)tEr with respect to the norm 

/2 1/2 
II x I1 , = sup ~ Y, x, 

i ~ l  k t E S i  / 

where the sup is taken over all disjoint families (Si : 1 < i < n } of  segments of  

T. Note that we obtain the sarae space if  we allow in the above definition the 

segments Si only to be finite. 

The analysis of  JT* requires one to represent its elements as functions on the 

set 7 TM = T U Ao, where Ao~ is a copy of  {0, 1 }N. This identification is done as 

follows: Let z* E JT*. 

For  t E T,  z*O)  = z*(et), where e, = (8t.~),er. 

For yEAo,, z*(y)  = l imterz* ( t ) .  

Note that the above limits exist by [L-S]. 

In particular z* E J T *  defines a continuous function on 7 ~, i f  7 ~ is equipped 

with "the order topology", i.e., all the points t E T are isolated points, and for 

TEA, a basis of  neighborhood:i is { { t E A : t  < 7 ,  It l > n } ;  n > 1}. 

With the above identification we define a family o f  operators n,  : JT*  

12(An), n > 1, by n , ( z* )  = ( z * ( t ) ) t e A . .  

We also define rro,(z*) = ( z* (7 ) ) r~ .  It is shown in [L-S] that  n~, defines a 

quotient  map from JT* onto I::(A). 

It also follows from [L-S] that  the subspace B of  JT* defined by 

B = { z * E J T * :  rico(z*) = 0} 
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is the (unique) isometric predual of  J T  and will therefore be denoted by J ,T .  
One of  the important  tools to prove Theorem 5.1 and the main theorem of  

the next section is the not ion of  molecules. 

A molecule is an element o f  JT* of  the form m = Zni=~ 2iZs,, where 

St, . . . ,  Sn are disjoint segments of  l e, 2i E R, E,_~n 2 2 =< 1. The set of  molecules 

will be denoted by M.  

To prove Theorem 5. l, we start with an easy proposition. 

PROPOSITION 5.3, Let n : X - ~  X be a projection with finite dimensional 

kernel and C a convex, bounded subset o f  X. Let 

A = inf{diam(S)  : S a s l i c e o f C }  and B = in f (d iam(T)  : T a slice o f  n( C) }. 

Then A < B. 

PROOF. Note that  X* = n*(X*) ~ n(X) ±. Let (x*)f_~ be a finite e-net in the 

ball of  n(X) ± of radius [[ I - n [] and observe that for x * E X * ,  ][ x* l[ = 1 

there is 1 -_< i _-< n such that  

(*) II x* - (~*(x*) + x*) II < e. 

Fix a slice Tofrr (C) ,  say T = T(y*,  d) = ( y E zr(C) : y*(y)  > M r ,  - 8}, where 

y* ~ r * ( x * ) ,  II y* II = 1, 8 > 0, and My. = supye~tc~y*(y) = supx~cy*(x). 
Let S be the slice of  C defined by 

S = S ( y * , 8 ) =  ( x ~ C : y * ( x ) > M r . - 8 }  = rc-~(T) A C. 

It is easy to obtain (see [B2]) a slice S~ of  C contained in S such that 

osc(x* ] SI) < e for every i E [1, n]. 

Fix x~, x2 E S~, x* ~ X*, II x* II --< 1 and find 1 =< i _-< n such that (*) holds 

true to estimate: 

I x * ( x , - x = ) l  =< I <n'x* + x ? , x , - x ~ > l  + 2 e  II C II 

< I(x*, ~txl - zrx2) I + e + 2e II C II 

_-_ diam(T) + e(! + 2 II C II ). 

This proves the proposition since 

diam(St) = sup{x*(x~ - x2) :Xl, x2~Sl ,  II x* II ~ 1). • 

REMARK. Note that  in the situation of  Proposit ion 5.3 one does not have 

A = B in general. Indeed, let X = Co ~)~ R, C = Ball(X), n : X ~ X the projec- 

tion onto co. Then A = 0 while B = 2. 
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We shall apply Proposit ion 5.3, for n E N ,  to the restriction 

map rtt~.,o I • J ,T - - ,  J , T  defined by nt~.o~l(x) = xZD,, where Dn = U,~= ~ A~ _ T. 

LEMMA 5.4. For e > 0 there is ~ > 0 such that the following holds true: For 

every n E N  and 2 ~/2(A,), II ~ II = l, one has diam(nt,,o)l(S) ) < , / 2  + e, for 
every slice S o f  Ball(J,T) o f  the.form 

s = {x ~ J . T  II x II ~ 1 and (rc.(x), 2) > 1 - ~}. 

PROOF. Suppose x E J , T  is a molecule m of  the form 

(1 )  m = Y~ 2 ( t )Xs ,  
t @An 

where St are finite segments of  the tree T such that t ~ St. Note that  m ~ S and 

that  for m and m '  of  the form (1), we have II ntn.o~l(m - m') II = ,/2. 
Let now x and x'  be two elements of  S. It is not  hard to see that, for 8 > 0 

small enough, there are y and y '  which are convex combinat ions of  molecules 

o f  the form (1) and such that  I1 x - y II < e/2 and [1 x '  - y '  II < e/2 (compare 

the proofs of  6.5 or 6.10). It follows that 

II ~[n.~l( x - x ' )  II < II ~[n,~](y - y ' )  II + e < ` / 2  + 

thus proving Lemma 5.4. 

PROOF OF THEOREM 5.1. Obtain ~ > 0 from L e m m a  5.4 for e = 3/2 - ` / 2  

and choose fl such that max(3/2, 2(1 - 8)) < fl < 2. We distinguish two cases: 

Case 1. sup{ II rt,o(z*) II : z* ~= C} =< 1 - 8, where C denotes the weak-star 

closure of  C in JT*. 

Assuming that  every slice of  C has diameter  greater than fl we may  apply 

Theorem 1.2(ii) for e < (fl/2) - Ill - ~) to find D c Csuch  that  82(D) > 1 - 8. 

Noting that, for z*EJT* ,  d i s t ( z* , J ,T )=  II no~(z*) II we arrive at a con- 

tradiction. 

Case 2. sup{ 11 no~(z*) 11 : z* ~- C} > 1 - ~. Then we may find x ~ C, n E N 

and 2 E 12(An) such that  (rtn(x), ,~) > 1 - ~. 
By Lemma 5.4 there is a slice S o f  ~ztn,o~l(C) of  diameter  less than  3/2 and by 

Proposit ion 5.3 there is a slice $1 of  C of  diameter  less than 3/2. • 
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6. A counterexample for the non-separable case 

THEOREM 6.1. There is a constant o~ < 1 such that for every subset C of  the 
unit-ball o f  JT* there is an extreme point z*** E C, the weak-star closure o f  C in 
JT*** such that dist(z***, JT*) _-< a. 

REMARK 6.2. The computations necessary for proving the theorem are 

quite messy (as usual when James space is involved). Hence we don't try to 

obtain the best constant a in the above theorem. Again, similarly as in Remark 

5.2 one may conjecture that for every e > 0, a = (,,/~/2) + e will work. The 

idea of  the proof is to exploit the phenomenon described in Remark 2.11 on 
every branch of  the tree T. 

A basic tool for understanding the structure of  the space JT* is the 

subsequent Lemma 6.3. Roughly speaking it states that the behaviour of  

elements of JT* is characterized by the behaviour of (convex combinations of) 

molecules; it turns out that these are relatively easy to analyse thus allowing us 

to obtain structural information about JT*: 

LEMMA 6.3. Denote M to be the set of  molecules in JT*. The unit ball o f  JT* 
is the norm-closed convex hull o f  M. 

PROOF. It follows from the definition of J T  that M forms a norming sub- 

set of  the unit-ball of  JT*. Hence the weak-star closed convex hull of  M equals 

the unit ball of  JT*. An easy application of  the Hahn-Banach theorem shows 

that 2Q*, the weak-star closure of  M, contains the extreme points of  the unit 
ball of  JT*. 

As JT  does not contain l ~ it follows from the l 1- theorem of Odell-Rosenthal 

[O-R] and Haydon [H] that the unit ball of JT* is the norm-closed convex hull 

of  hi*. To end the proof of  this lemma it suffices to prove the following. 

CLAIM. Let MI  = {Z~=t 2jZ~" Z 22 =< 1 andSj are disjoint segments of'['} 
then MI  = hi*. In particular M is norm dense in hi*. 

PROOF. It is clear that M is norm dense in MI. Let us show that MI is 

w*-closed in JT*. 

= 2; ~ ") be a net in MI. We may suppose that the Let ( m , ) ~ ,  m, J=~ X z~j °~ 

scalars 2J ") are such that, for every a, l a } ° ) l  >_- _ > - . . .  >___ I >___ . . . .  

Passing to a refinement of  the net (m,),et, we may also suppose that for every 
j EN,  there exists a segment Sj of ie such that Xs~(t)= lim, Zg-,(t) for every 

t E T. This means that Xs, = ~o* - lim, Xg-' for every j  ~N .  
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If 2j = lim~ 2) ~), then ~ 22 < 1 (the unit ball of  l 2 is weakly compact) and 

hence it follows easily that m == Z 2jXs, = o9* - lim~ m~. • 

To prove Theorem 6.1 we need a closer investigation of  JT***. 

Let z*** EJT***, and (z*)~ej a net in JT* converging weak-star to z***. As 

the restriction of  z*** to JT  induces an element of  JT* it follows from the 

analysis in [L-S] or from Lemrna 6.3 above that the function z*** on the tree T 

defined by z***(t3 = lim, z*(t) converges along every infinite branch of  T. 
Let Ao,_ 1 be another copy of' {0, 1 }N, where we identify the branches of  T 

with the points of Ao~-l. Define for y EAO,_1, z***(y)= limte~z***(t). (This 

limit exists by the above observation.) 

On the other hand the function z*** on Ao, defined by z***(7) = lim~ z*(7) 

for every Y ~Ao, exists, since (no,(z*)Lei is weakly Cauchy in 12(A). 

So we can represent z*** as a function on ~ = T U Ao,_ 1 U Ao,, such that 

(z***(t))tey converges to z***(~,)for every ), EAO,_ t which we identify with an 

infinite branch of T, i.e., z*** is a continuous function on ~ i f w e  consider 

as a topological space such that T U Ao,_ 1 is "the order compactification" of  T 
described in Section 5 and A~ is a clopen subset of  7 ~. (This explains why we 

have chosen the somewhat unorthodox notation Ao,_ 1 to indicate that Ao,_ 

squeezes in between T and Ao,.) 
The operator n * * ' J T * * * ~  12(A) is still given by the restriction of  z*** 

JT*** to Ao,, i.e., no(z***) = (z***(Y))yea., and will therefore still be denoted 

by no,. We may also define n,,_~ : JT***----12(A) to be the "restriction" of  

z*** ~ JT*** to Ao,_ 1, i.e., no,_ l(z***) = (z***(Y))r~_,. 
Observe that if i denotes the natural injection from JT* into JT***, then 

i(JT*) = ker(no, - no,- 0. 
Observe also that (no, - no,_ 111 is an operator onto/2(A), hence (no, - no,_ 1) 

induces an isomorphism between/2(A) and JT***/JT*. In particular, for every 

z***EJT*** one has dist(z***, i ( J T * ) )  < C U (no, - rto~_l)z*** 11 fo r  some 
constant C. The main step in proving Theorem 6.1 is to show that 

dist(z***, i( JT*))= [[ (no, - no,._l)z*** [[/x//-2. 

Let us now give some technical lemmas on the structure of the molecules and 

the operators n~ and no,_ 1. 

LEMMA 6.4. Let z*** EllTI = hTp(Jr".sr**) where M denotes the set o f  mole- 

cules ofJT*, ~ = no,(z***), and q = no,_l(z***). 

There is ~ E F(A), and a set A C_ A, A C_ supp(~), A n supp(( )  -- j25 such that 

rl = ~ "ZA + ( and l[ ~ I[ 2 + 11 ( [bl 2 < 1. Hence 11 ~ - r/11 < x/2. 
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PROOF. Let (m~)~et be a net in M converging weak-star to z*** and write 

m . - -  E 27X~= E 2 ; Z ~ +  2 27z~=m~+mZ~ • 
jEJ(a) jEJ l ( a  ) jEJ2(a  ) 

Here S 7 are segments of T, J(a) finite index sets and 

Jl(a) = ( j ~ J ( a ) : S ]  • supp(~) ¢ ~ }  and Jz(a)=J(a) \J l (a)  

where we consider ~ as a function on A. Clearly for every 7 EA, 7 ~supp(~),  

(m2 (7))~el converges to ~(7). Hence lirn~i Xjej2(~) I~ ~ 12 < 1 - II ~ II 2. 
Let x*** and y*** be weak-star cluster points in JT*** of  (m2),~ and (mJ),Ei 

respectively and let ( = no-,(y***), which clearly satisfy II ~ II z + II ff II z =< 1. 

For 7 CA distinguish two cases: 

Case 1. There exists a segment S of T containing 7 such that, for a big 

enough, there is j  EJ,(a) with S 7 ___ S. In this case we get ~(7) = n,o(z***)(7) = 

n ~ _ , ( x * * * ) ( 7 )  = ~(~). 
Case 2. If case 1 does not happen, we get no~-,(x***)(7)= 0 hence 

~_,(z***)(y)  = ,t(~) = ~- , (y***) (7 )  = ~(~). 
Let A be the set of  the points in A such that case 1 happens. Then 

r /=  ~')CA + (- Finally observe that 

(*) II ~ - , 1  II--< II ~ -  ~ .x~ II + II , 7 -  ~ .z~ II---< II ~ II + II (II---< x/~. 

PROPOSITION 6.5. For every e > O, there exists ~ > O, such that for every 

z***~JT***, II z*** II =< 1, w e  have the following: 

(**) I 1 ~ - ~ 1 1 > v / 2 ( 1 - 6 )  ~ l l ~ + ~ l l - - < e a n d  I I ~ l l = + l l ~ l l : > _ - l - e  

where ~ = no~(z***), and rl = riot_ ,(z***). 

PROOF. From (*) and using the relation II ¢II = + II ~ II = --- 1 one easily 
checks that for every e > 0, there exists 6~(e) > 0 such that (**) holds for every 
z***~)Q. [To do so check the following estimates: I1~11 ~ ( v / 2 / 2 ) ;  
II ~ - ~x~ II ~ (v/-2/2); II ~z~ II -" 0; II ~ II ~ (v/2/2); II ~ + '1 II "~ 0.] 

Fix now e > 0, and let z*** ~JT***, II z*** II =< 1 such that II ~ - q II > 
v/2(1 - ~) (the value of ~ will be fixed later). Since l'q~ JT**, the P-theorem of 

Odell-Rosenthal [O-R] and Haydon [H] implies that conv 3~t = B(JT***). So 

we can find n G N, and elements (z***)~ .~, ~ )Q such that 

1 ~ , ,  < S x / ~  
n i = ~  
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Let ~i = no(z***) and rli = n,~_ ~(z***), and 

I = { i E [ 1 ,  n]:  I I ~ i - q ,  [[ --<v/2( 1 - v / 5 ) }  • 

Then it is not difficult to see that 

1 ~ (,~i ~]') > ,v/~(1 _ 35), 
n i - t  

and III < 3nv/-6. 

I f  we assume that ~ < 5~(e/2), we deduce that  

II ~ + rl II < 26v/-~ + 6v/-~ + e/2 < e 

i f  5 is small enough. 

On the other hand we have 

II ~ II 2 + II n II 2 -- ½( II ~ - q II 2 + II ~ + q II 2) > (1 - ~)2 > 1 - 

i f  5 ~ e/2. • 

PROPOSITION 6.6. For z*** E JT*** we have 

II (no, - no, _,)(z***)II --< v / ~  II z*** II. 

PROOF. The function d : JT*** --- R+ defined by d(z***) = 

II (no, - no,_ 0(z***)  II is convex and norm-continuous.  As the convex hull of  

)Q is norm-dense in the unit-ball of  JT***, we infer from Lemma 6.4 that  

U (no, - no,_ ,)(z***) II --< ~ if  II z*** II --< 1. • 

PROPOSITION 6.7. Denote i : JT*  ~ JT*** the canonical injection f rom JT* 

into its double dual. Then dist(z***, i (JT*))  = II (no, - no,_ l)(Z***) II/,,/-2, for 
every z*** E JT***. 

PROOF. Let ~ = no,(z***) and r / =  no,_~(z***). Find z * E J T *  such that  

no,(z*) = (~ + r/)/2; then for y*** = z*** - i(z*) we obtain 

no,(y***) = { - ({  + q)/2 = ({ - r/)/2 

and 

no,_,(y***) = : 1 / -  ({  + q)/2 = (rl - {)/2, 

and clearly dist(z***, i ( JT*) )  = dist(y***, i (JT*)) .  

Hence there is no loss of  generality in assuming in the statement of  the 

proposit ion that { = - r/. 

Fix e > 0 ,  and let A = { a ~ , . . . , a ~ }  be a finite subset of  A such that 
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II ~ - ~xA II < e. Choose now disjoint segments S~ . . . . .  Sk of  7" ending at 
a~ . . . . .  ak respectively. 

Then the molecule m = Zf=~ ~(aj)Zsj satisfies II m l[ = (zJ'_, [~(aj)[2) 1/2< 

II ~ II, and II ~ - x,o(rn)II < e. 
We may assume that there is n E N such that all Sj start at level n. For  p > n 

and 1 < j < k ,  let Sf  = S j  N(A,  U A , +  1U . . .  UAp), Tf = S j \ S f ,  and x * =  

Z~_l ~(aj)( - Z~ + Zn). 
Then II x*  II =-< ~ II ~ II and (i(xp*));;=l converges weak-star to an element 

x***EJT*** such that I t ~ ( x * * * ) - ~  II < e  and II ~ o , _ , ( x * * * ) + ~  II = 
II no~_ ,(x***) - ~ II < e. Hence 

dist(z***, i(JT*))< dist(x***, i(JT*))+ dist(z*** - x * * * ,  i(JT*)) 

=< II x*** U + C II (~o~ - ~ - l ) ( Z * * *  - x***) II 

_-<,,/5 II ¢ II +2ce. 

As e > 0 is arbitrary we have proved the implication " < ". 

As regards the reverse inequality observe that 

x/~.dist(z***, i(JT*)) = x / ~ . i n f {  II z*** - z* II • z * e J T * }  

>= inf{ II (=,o - n,o_ ,)(z*** - z*)" z * e J T * }  

= II (~,o - ~-l)(Z***) I1" • 

An immediate  corollary of  Proposi t ions 6.5 and 6.7 is the following: 

COROLLARY 6.8. For e > 0  there is 5 > 0  such that, for z***EJT***, 
II z*** II = 1, with dist(z***, i( JT*)) > 1 - 5, one has 

II ~ ( z * * * )  + n~_,(z***)  II < e and II n~(z***) II 2 + II n~-1(Z***) II 2 > 1 - e. 

For  the next l emma we need to introduce some notations. 

Denote  p,  : A ~ A, the natural projection, defined by p, ({e~ }F- l) = {e~ }/'_ 1. I f  

A is a finite subset o f  A such that p, ,  restricted to A, is one to one a n d f E  12(A) 

with supp{ jr} C A, we define the element p , ( f )  of  F(A,) by 

If(),) i f t  < 7 for some T E A ,  
p,(f)(t)  [0 if not. 

With this notation we formulate  an immedia te  consequence o f  6.8. 

LEMMA 6.9. For e > 0  there is 5 > 0  such that, for z***~JT***, 
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II z*** II = 1 and dist(z***, i ( J T * ) ) >  1 - 3 ,  for every net (z*)~1 in i (JT*)  

converging to z*** and n E N there is ~ E 12(A), II ~ II = 1, with finite support 

A and n < r < s ,  r, s E N  suck thatpr is one to one o n A  andsuch that there is 

a E I with 

(i) ( p,( ~), rts(Z*))12(a,) > x/~/2 - e 

and 

(ii) ( p , ({) ,  ~Zr(Z*))t2(a,) < -- ,e/-2/2 + e. 

PROOF. Fix e > 0. By 6.8 there is 5 > 0 such that dist(z***, i (JT*))  > 1 - 5 

implies that there is ~ E 12(A) with finite support,  II ~ II = 1 and such that 

II n~(z***) - ~ /v/2  II < e and II ~ _ , ( z * * * )  + ~ / , f 2  I1 < e. 

Using the definition of  z***(7) for 7EA~_~, we deduce that there exists 

r>=n,  such that Pr is one to one on the support  o f  ~, and such that 

(nr(z***), Pr(~)) < -- V/~/2 + '~, hence for o~ > a0(r), we have (n~(z*), pr(~)) < 

- x / ~ / 2  + e .  

On the other hand for a > ,~ > a0(r), we have (zco~(z*), {) > x/2/2 - e. So 

there exists s > r such that (n,(z*), {) > v/2/2  - e (since the elements o f  JT*  

are continuous functions on 7~'). • 

We now establish the final technical tool for the p roof  of  Theorem 6.1: 

LEMMA 6.10. There is an .absolute constant x > 0 such that the following 

situation can not occur: 

There exists ~, 2 EIE(A), II ~, II = II ~ II = 1 with finite supports, z * E J T * ,  

II z*  II = 1, and n < r < s  < m,  such that: 

(0) p, is an injection bol, h on A = supp(~)  and B = supp(2), 

(i) ( Ps(~), n~(Z*))l'E~a,) > X/2/2 -- X, 

(ii) (Pr(~),  r~(Z*))t2~a,i < -- , ~ / 2  + X, 

(iii) ½[(p,(2), ZC,(Z*))I,~a.) + (Pm(2), n,,(Z*))/'~.)] > ~- 

PROOF. Suppose first that z* is a molecule of  the form 

t ~ p,(A ) t ~ p~(A ) 

where {(S~ 2 )te~,~A), (Si)t~p,(~)} is a disjoint family of  segments in Tsuch  that t is 

an element ofS~ (resp. o f  S{), for every t ~ p~(A) (resp. every t ~ p,(A)). Note  
that such a z* satisfies (i) and (ii) for each x > 0. 

Let B~ = (B \ A ) U  {t ~ A  U B such that s i gn (~ )=  sign(2)} and B~ = B \B~ 

= {t ~ A  f3 B such that sign(~) ÷ sign(2)} and let 21 = 2ZB ' and 22 = ;tZs,. 
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Note that (p.(21), zt.(z*)) _-< 0 as none of the segments S~ can pass through 

p.(BO and the contribution from the first term in (1) can only be less than or 
equal to zero. 

Similarly we get (p,.(22), Ztm(Z*))=< 0 as none of  the segments S~ can pass 

through Pm (B2). 
Hence 

½[(p.(2), ~.(z*)) + (pro(2), ~m(z*))] 

< 1 =.~[(Pn(22), 7~n(Z*)) + (pm(21), 7rm(Z*))] 

--<,½[ II 22 II • II ~,(z*)II + I121 II • II ~m(Z*) [I] 

= (½",/2)[ II 22 II + II 21 II] --< ½, 

a contradiction to (iii). 

If z* = Z~t/ti" z* is a convex combination of  molecules, where I is a finite 

set, z* satisfying (i), (ii) and (iii) for x = 10-7, there is 11 _C I such that 

Ziei\1,/ti < 10-6 and for i ~I1, z* satisfies (i) and (ii) for x = 10 -6 .  

One easily verifies that, for i Ell ,  there is a molecule y* of  the form as given 

in (1) such that II z/* - y,* Ib -  < 10-2. 
Hence there is a convex combination y* = Z~EI, x~ .y* where y* are mole- 

cules of  the form described in (1) and such that II z* - y *  I1~. < 10- ' .  

As the expression given by (iii) gives a value less than or equal to ½ for y* 

(by the first part of  the proof) we arrive at the desired contradiction (obtaining 
10 -7 as a possible choice for x). [] 

PROOF OF THEOREM 6.1. We  distinguish two cases: 

Case 1. sup{ II ~,o(z*) II" z* E C} < 2/3. Then (since no~(C) = n,o(~)) it is 
easy to obtain from Corollary 6.8 an absolute constant al < 1 such that 

dist(z***, i(JT*)) < oq for every z*** of  C. 

Case 2. There is z* ~ C such that II n~(z*) II > 2/3. 

Let x > 0 be given by 6.10 and determine 5 > 0 from 6.9 by taking e = x. 

Let a 2 ---~ 1 - 5. 

We may find 2 EF(A), II 2 Jl = 1 of  finite support B and n ~ N  such that p, is 

injective on B and such that ½[(p,(2), lr,(z*)) + (2, 7r,o(z*))] > 2/3. 

Define a slice S of  C by S = {x* E C:  ½[( Pn (2), rr, (x*)) + (2, rc,o (x*))] > 2/3 }, 
which is non-empty as z* ~ S. 

The weak-star closure S of  S in JT*** contains an extreme point z*** of  C. If  

dist(z***, i(JT*)) is bigger than a~, we derive from 6.9 that there is zJ' ~ S and 

~EF(A) and n < r < s  such that (i) and (ii) of  6.9 are satisfied with e = x. 
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On the other hand z* ~ S, hence there is m ~ N, s < m such that 

½[(p,(2), 7r,(z*)) + (pro(2), Z~m(Z*))l > 2/3. 

Hence we are exactly in the situation which is proven to be contradictory 

by 6.10. 

Finally let ot = max(a~, a2) to finish the proof. • 

7. Another counterexample 

In Section 2 we gave a geometrical proof of Theorem 1.1(iii), and the 

previous example shows that the separability assumption in this theorem 
cannot be dropped. 

One may also give a more analytical proof of 1.1 (iii). We are going to show in 
this section that separability is also necessary in a crucial step of this analytical 

proof. The counterexample of this section also answers negatively a question 

of K. Musial" (see Remark 7.3). 

We start by giving the analytic proof of Theorem 1.1 (iii). 

Recall that the extreme points K of/~ equipped with the w*-topology (i.e., 

the topology a(L ~(A)**, L ~(A)*)) is a compact space called the Stone space of  

L~(A). The space L°~(A) may naturally be identified with C(K) and we shall 

wri te f for fEL~(A)  if we regardfas  a continuous function on K. (For details 
we refer to IT], 1.4.) 

If we denote by/2 the Haar measure on A, there is a unique Radon-measure 

on K such that for every fEiL~(A) the equality SAf(y)d/2(Y)= Srf(s)df~(s) 
holds true. 

We shall need the following fact about the Stone space (K, fi), which follows 
immediately from [T], 1.4.3a: For every/2-measurable set f~ _ K,/2(f~) > 0, 

and every e > 0 there exists an/2-measurable B _c A,/2(B) > / i ( f l ) -  e, such 
that f2 D/~, where /J is the clopen subset of  K corresponding to B, i.e., 

= Ext(FB). 

LEMMA 7.1. Let Y be a separable Banach space and T: L~(A) -~ Y be a 
continuous linear operator. Let ~o denote the restriction to K of the function 
dr  ° T** : L~(A) ** ~ R+, where dr(y**) = dist(y**, Y), The function ~o is ~- 
measurable. Moreover, T is representable iff ~o equals zero ~-almost everywhere. 

PROOF. For y E Y, y** E Y**, let dr(y**) = ]] y** - y ]]. 
Note that d r is a lower semicontinuous function on  (Y**, w*), hence dy o T** 

is lower semicontinuous and therefore/2-measurable. 
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Let (Yo)~=l be a dense sequence in Y and note that dr o T * * =  

inf, eN dy. o T**, which shows that fp is 12-measurable. 

As regards the last assertion it follows from the remark preceding the lemma 

that/~({~0 = 0}) = 1 iff, for every e > 0, there is B ~ A,/z(B) > 1 - e, such that 
_c = 0 ) .  

The latter assertion is equivalent to saying that T * * ( ~ )  __ Y, i.e., that T o RB 

is weakly compact, where RB:LI(A)~L~(A)  is the multiplication with the 
indicator function of  B. 

As is well known ([D-U], Prop. III.2.21) this "almost weak compactness" is 

equivalent to the representability of  T. The lemma is proved. • 

After these preliminaries we can give an alternative proof  of  Theorem 
1.1 (iii): 

If Y fails RNP there is a non-representable operator T: Li(A) -~ Y. Hence 

II II,o K ), 0 and we may assume II IIL= K )= 1 - e/2. 
Find a/2-measurable set fl  _c K,/~(fl) > 0, such that ~0 is bigger than 1 - e on 

ft. Let (Y,),~= 1 be dense in Yand denote ~0, the restriction ofdy. o T**to K. As 

~o = inf{~0, : n EN}  we may find n0EN and an/~-measurable subset D, o f ~ ,  

~(fll)  > 0, such that ~0, 0 is smaller than 1 on D~. Let B be a g-measurable subset 
of  A,/z(B) > 0, such that/~ _ D~. 

Note that T * * ( ~ )  is contained in the ball of  radius 1 around Y,o. As every 
extreme point of T ( ~ )  = T * * ( ~ )  is the image under T** of  an extreme point 

of  ~ ,  we conclude that every extreme point of  T ( ~ )  has distance from Y 
bigger than 1 - e. 

Finally, letting C = closed convex h u l l ( ( T ( ~ ) -  Y,o),- ( T ( ~ ) -  Y,o)} we 

have constructed again a set satisfying the requirements of  Theorem 1. l(iii). • 

The separability is necessary to insure the measurability of  the function ~0: 

THEOREM 7.2. There exists a non-separable space X and an operator 

S" L~(A)-~Xsuch that ~o is not measurable. 

We first fix some notation. 

Let A be a subset of  A. We define the subspace ZA of JT* as 

ZA = (X* ~JT*" no,(x*)(~') ---- 0 for all ~, EA }. 

One quickly verifies that Z~ is a closed subspace of  JT*. Note that JT* = Z¢ 

and J ,  T = B = ZA. 

Define F : A  ~ JT* by F(~,) = Zbtr), where b(~,) is the branch of  f" starting at 

the origin of  T and ending at ~, E A,o and Zb<~) denotes the indicator function of  
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this branch. Clearly F is a weak-star scalarly measurable function (in fact, F is 

weakly scalarly measurable) hence we may define T: L~(A,/t)---JT* by 

= w* -- ~ f(7)" F(7)d#(7). T ( f )  
d A  

One easily checks that Tdefines in fact an operator into B ~ still denoted by 

T ~ and that the integral even makes sense as a Pettis integral. In fact, T is the 
"canonical" non-representable, operator from L t to B. 

PROOF OF THEOREM 7.2. We are going to show that if  A C A is o f / t -  

inner measure 0 and outer measure l, then the statement of Theorem 7.2 

holds with X--ZA and S := Ta =j~ o T, where jA:B--"ZA denotes the 

canonical embedding. 
We first have to identify the, double-dual of  Za: 
Let i A : Z A - " J T *  be the canonical embedding. Using the notation of 

Sections 5 and 6, the space Z * ' ~  strictly speaking i**(Z**) ~ is the subspace 
of  JT*** given by 

i**(Z**) = (x*** ~.IT*** : n~(x***)(7) -- 0 for all ), EA }. 

We shall identify ZA** with a subspace of JT*** which in turn we represent 

as a space of functions on 7 ~. 
We now investigate ~0: As in 2.8(2) let ~u denote the canonical surjection of  

the Stone space K onto A obtaiined by restricting the elements of K, which is a 
subset of  L~(A, #)*, to the subspace C(A) of L°°(A,/t) and identifying A with 

the Dirac measures in C(A)*. 
Note that the operator (TA)* : Z* --" L~(A,/~) takes its values in C(A). Indeed 

it suffices to verify that T* : B* ---L~(A, /t) takes its values in C(A) which is 
obviously true, as in B* = J T  the unit vectors (et)t~r span a dense subspace of  

J T  and T* (et) = ZI, ~ C(A), where It denotes the sets of elements of A which are 

successors of t (ZI, is continuous since It is a clopen subset of  A). 
Hence TA** : L~(A,/t)* ~ Zj ** factors through C(A)* and the restriction of 

T** to K factors via ~u" K-~ A through A, i.e., T~A~ = SA ° ~', where SA is a 

function from A to Z**. 

One easily verifies that, for 7 EA, SA(7) = Zke,) where k(~,) is the branch in 
7 ~ = T U Ao,- ~ U Ao, starting at the origin and ending at 7 ~ Ao~ _ ~ (not contain- 
ing the 7 ~Ao~!) and Zkty) is the indicator function of this branch. Indeed, it 

suffices to consider, for TEA, a sequence (f,),%~ in the positive face ~" of 
L~(A,#) converging a(C(A)*, C(A)) to the Dirac measure at the point 7 
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and to note that (TAf~),~ is a sequence in jA(B) converging pointwise on 7 ~ 
towards Xk(r). 

Now make the crucial observation, similarly as in Remark 2.11 above: 
Ifg' CA then similarly as in 2.11, dist(SA (~,), ZA) = 1, while for y ~A we have 

dist(SA(y), ZA) < , /2/2.  Indeed, in the latter case the element (½)Xa{y), where 
20') consists of  k(7) plus the element 7 of A,o, is in ZA - -  more precisely in the 
canonical image of ZA in Z** - -  and therefore 

dist(SA(7), ZA) <= II 

Define, for n EN,  the element P,(Y) of JT*** by 

½0 fortE2(9,),  [ t l ~ n ,  

p,(y) = ½ for t CA(y), I t] > n (including [tl : o9 - I and I tl = co), 

elsewhere. 

If we denote by i the canonical embedding of JT* into JT***, then 

II pn(y) II = , / 2 / 2 ,  pn(y) and (pn(y)),~= ~ converges a( JT***, JT**) to 

Hence, for V ~A,  dist(S~(v), ZA) < II z,( l - --< , f 2 / 2 .  
So the function ~0: K ~ R +  equals 1 on q/-~(A) and is less than or equal to 

v/2/2 on ~u-~(A \A).  As A is not/~-measurable, ~0 is not/~-measurable. • 

REMARK 7.3. The above Banach space ZA also gives a counterexample to a 
question raised by K. Musiat: at the 15th winter school of the Cech Academy of 
Science in Srni (January 1987) on extendability of Pettis-integrable functions: 

Let A _ A be as above (i.e.,/t*(A) = 1,/t .(A) = 0) and let (14, ]~,/~) be the 
measure space induced by the outer measure #* on the trace ~ of  the / t -  
measurable subsets Z of A on A. If k : A --- A is the canonical embedding, then 
clearly k(/~ ) = / t  and the operator l: L~(A,/t)--* L~(A, ~t) defined by l ( f )  = f o k 
is an isometric isomorphism between L ~(/t) and L ~(/~). 

PROPOSITION 7.4. With the above notation there is a Banach space X and 

an operator S : L ~ ( A , f t ) ~ X  which is representable by a Pettis-integrable 

function dp : A --, X but such that the operator S o l : LI(A, Iz)--" X is not re- 
presentably a Pettis-integrable function ~ : A ~ X. 

PROOF. It suffices to let X -- ZA and S = TA o l -  1, where TA and ZA are 
defined above. 

Let • be the restriction to A of the function F defined at the beginning 
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of  Section 7. Clearly • takes its values in ZA, is Pettis integrable, and 
represents S. 

On the other hand, consider the operator ia o S o I:LI(A,I~)-- , jT *. This 
operator is represented by a Pettis-integrable function, namely F: A----JT*. 

As JT is separable, we conclude that any Pettis-integrable function 
G : A ~ JT* representing ia o S o l equals F/l-almost everywhere. In particular, 
any such G must take its values in JT* \ iA (Za) on a set of#-outer measure 1. 

Hence there cannot be zt Pettis-integrable function W representing 
SoI:L~(A, I t )~ZA as iAoW then would represent iAoSo l  and take its 

values in iA(Z~). 
This contradiction finishes the proof. • 

REFERENCES 

[B1] J. Bourgain, A geometric characterisation of the RNP in Banach spaces, Compositio 
Math. 36 (1978), 3-6. 

[B2] J. Bourgain, Dentability andfinite-dimensional decompositions, Studia Math. 67 (1980), 
135-148. 

[B3] J. Bourgain, Sets with the Radon-Nikod~m property in conjugate Banach spaces, Studia 
Math. 66 (1980), 291-297. 

[Br] R. Brackebusch, James space on general trees, J. Funct. Anal., to appear. 
[D-U] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys, 15, Am. Math. Soc., 

Providence, 1977. 
[D-Z] R. Deville and V. Zizler, E~rthest points in ¢o*-compact sets, preprint. 
[G-G-M-S] N. Ghoussoub, G. Godefroy, B. Maurey and W. Schachermayer, Some topologi- 

cal and geometrical structures in Banach spaces, Mem. Am. Math. Soc., No. 378 (1987). 
[G-M] N. Ghoussoub and B. Maurey, H~ embedding and optimisation on Ga sets, Mem. Am. 

Math. Soc., No. 349 (1986). 
[Go] G. Godefroy, Metric charac,!erization of first Baire class linear forms and octahedral 

norms, preprint. 
[Go-M] G. Godefroy and B. Maurey, Normes lisses et anguleuses sur les espaces de Banach 

sdparables, unpublished. 
[H] R. Haydon, Some more characterisations of  Banach spaces not containing l t, Proc. Camb. 

Phil. Soc. 80 (1976), 269-276. 
[J] R. James, A separable somewhat reflexive Banach space with non-separable dual, Bull. 

Am. Math. Soc. 80 (1974), 738-743. 
[L-S] J. Lindenstrauss and C. Stegall, Examples of  separable spaces which do not contain l 1 

and whose duals are not separable, Studia Math. 54 (1974), 81-105. 
[L-L-T] Bor-Lin Lin, Pei-Kee Lin and S. Troyanski, A characterisation of denting points of  a 

closed bounded, convex set, Proc. Am. Math. 345 (1988), 526-528. 
[O-R] E. Odell and H. P. Rosenthal, A double dual characterization of separable Banach 

spaces containing I t, Isr. J. Math. 20 (1975), 375-384. 
[P] A. Pet;czyfiski, On Banach spaces containing Ll(lt), Studia Math. 30 (1968), 231-246. 
[R] H. P. Rosenthal, On non-norm.attaining functionals and the equivalence of  the weak-star- 

KMP with the RNP, Longhorn Notes 1985-86, The University of Texas, Austin. 
IS 11 W. Schachermayer, Some more remarkable properties of  the James tree space, to appear. 
[$2] W. Schachermayer, TheRadon-Nikodpm and the Krein-Milman property are equivalent 

for stongly regular sets, Trans. Am. Ma~:h. Soc. 303 (1987), 673-687. 



Vol. 65, 1989 RADON-NIKOD~(M PROPERTY 257 

[St 1 ] C. Stegall, The Radon Nikopm property in conjugate spaces, Trans. Am. Math. Soc. 206 
(1975), 213-223. 

[St2] C. Stegall, The RNP in Banach spaces I, Vodesungen aus dem Fachbereich Mathematik 
der University Essen, Heft 10, Essen, 1983. 

[T] M. Talagrand, Pettis integral and measure theory, Mere. Am. Math. Soc., No. 307 (1984). 
[W] E. Werner, Non dentable solid subsets in Banach lattices failing RNP, and applications to 

renormings, Proc. Am. Math. Soc., to appear. 


